
Frame representations of quantum mechanics and the necessity of negativity in quasi-

probability representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 352001

(http://iopscience.iop.org/1751-8121/41/35/352001)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/35
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 352001 (11pp) doi:10.1088/1751-8113/41/35/352001

FAST TRACK COMMUNICATION

Frame representations of quantum mechanics and the
necessity of negativity in quasi-probability
representations

Christopher Ferrie1,2 and Joseph Emerson1,2

1 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario,
N2L 3G1 Canada
2 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario,
N2L 3G1 Canada

E-mail: csferrie@uwaterloo.ca and jemerson@uwaterloo.ca

Received 21 May 2008, in final form 21 May 2008
Published 25 July 2008
Online at stacks.iop.org/JPhysA/41/352001

Abstract
Several finite-dimensional quasi-probability representations of quantum states
have been proposed to study various problems in quantum information theory
and quantum foundations. These representations are often defined only
on restricted dimensions and their physical significance in contexts such as
drawing quantum-classical comparisons is limited by the non-uniqueness of the
particular representation. Here we show how the mathematical theory of frames
provides a unified formalism which accommodates all known quasi-probability
representations of finite-dimensional quantum systems. Moreover, we show
that any quasi-probability representation is equivalent to a frame representation
and then prove that any such representation of quantum mechanics must exhibit
either negativity or a deformed probability calculus.

PACS numbers: 03.65.Ta, 03.67.−a

1. Introduction

The Wigner function [1] is a quasi-probability density on a classical phase space which
represents a quantum state. The term quasi-probability refers to the fact that the function is
not a true density as it takes on negative values for some quantum states. As is well known, the
Wigner formalism can be lifted into a fully autonomous phase space theory which reproduces
all the predictions of quantum mechanics [2].

In recent years various phase space and other quasi-probability representations of finite-
dimensional quantum systems have been proposed. In the remainder of the paper, whenever
we refer to a representation of quantum systems, we implicitly mean a representation of
finite-dimensional quantum systems (of dimensional d). For example, the Wootters [3] phase
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space function is defined on a d × d lattice indexed by the integers modulo d for all d
dimensional Hilbert spaces where d is prime—it is defined on the Cartesian product of these
lattices whenever d is composite. Leonhardt [4] introduced a four-fold redundant phase space
function on a 2d × 2d lattice indexed by the integers modulo 2d which is valid for d an even
integer. Heiss and Weigert [5] have defined a phase space function on d2 points embedded in
the sphere S2. Gibbons, Hoffman and Wootters [6] introduced a discrete Wigner function on a
d × d lattice indexed by elements of a finite field of dimension d when d is a power of a prime
number. There are several others (for a recent review see [7]). In addition to these discrete
phase space functions, continuous phase space representations of finite-dimensional quantum
state have also been introduced [8], as well as more general quasi-probability representations
[9, 10], which are real-valued representations that do not necessarily reflect any preconceived
classical phase space structure.

Such representations have provided insight into fundamental structures for finite-
dimensional quantum systems. For example, the representation proposed by Wootters
identifies sets of mutually unbiased bases [3, 6]. Inspired by the discovery that quantum
resources lead to algorithms that dramatically outperform their classical counterparts, there
has also been growing interest in the application of discrete phase representation to analyze the
quantum-classical contrast for finite-dimensional systems, for example, quantum teleportation
[11], the effect of decoherence on quantum walks [12], quantum Fourier transform and
Grover’s algorithm [13], conditions for exponential quantum computational speedup [14, 15]
and quantum expanders [16].

A central concept in studies of the quantum-classical contrast in the quasi-probability
formalisms of quantum mechanics is the appearance of negativity. A non-negative quasi-
probability function is a true probability distribution, prompting some authors to suggest
that the presence of negativity in this function is a defining signature of non-classicality.
However, a quantum state can be negative in one representation and positive in another.
This simple fact underscores the obvious problem that considering any one of these quasi-
probability representations in the context of determining criteria for the non-classicality of a
given quantum state is inadequate due to the non-uniqueness of that particular representation.
Ideally one would like to determine whether the state can be expressed as a classical state in
any quasi-probability representation. Indeed the sheer variety of proposed quasi-probability
representations prompts the question of whether there is some shared underlying mathematical
structure that might provide a means for identifying the full family of such representations.
The first goal of the work presented here is to provide such a unifying formalism.

Moreover, from an operational point of view, states alone are an incomplete description
of an experimental arrangement. For example, it is proved in [15] that, within the class of
quasi-probability representations due to Gibbons et al [6], the only positive pure states are a
subset of the so-called stabilizer states. The authors note that these states are ‘classical’ from
the point of view of allowing an efficient classical simulation via the stabilizer formalism.
However, this set of positive states includes the Bell states—states which (maximally) violate
a Bell inequality—and hence these states are maximally non-classical according to a far more
conventional criterion of classicality: locality.

The resolution of this paradox is that one must also consider the representation of
measurements in the quasi-probability representation in order to assess the classicality of
a complete experimental procedure. Hence, it is important to elucidate the ways in which
a quasi-probability representation of states alone can be lifted to an autonomous quasi-
probability representation of both the states and measurements defining a set of complete
experimental configurations. Indeed, in the representation considered above, although the Bell
state has a positive representation, one can show that the conditional probabilities representing
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the measurements assume negative values (and hence are non-classical in a sense we make
precise below). Indeed, the second goal of this work is to determine the full set of possible
quasi-probability representations of both states and measurements. Only by considering this
full set of quasi-probability representations it is possible to establish a meaningful sense in
which the appearance of negativity provides a rigorous notion of non-classicality, i.e., either
the states or effects (or both) must exhibit negativity in all such representations (otherwise a
classical representation does exist).

The outline of this paper is as follows. In section 2, we show how the mathematical
theory of frames, which has been developed in the context of signal analysis to devise methods
of representing information redundantly in order to protect it against noise [17], provides a
formalism which underlies all known quasi-probability representations of finite-dimensional
quantum states. In section 3, we show that there are two ways in which any quasi-probability
representation of states can be extended to include a representation of measurements, and
hence lifted to a fully autonomous formulation of finite-dimensional quantum mechanics. In
section 4, we prove that any representation that reproduces all of the predictions of quantum
mechanics must either (i) exhibit negativity in the quasi-probability functions for either states
or measurements or (ii) make use of a deformed probability calculus and then clarify in which
sense these correspond to non-classical properties. We conclude in section 5 by discussing
how our formalism can be applied to determine when non-classical resources are present in an
experimental system or a given quantum information task which involve only a restricted set
of preparations and measurements. In the discussion we also connect our results with recent
independent work [18] which establishes negativity and contextuality as equivalent criteria of
the non-classicality of quantum mechanics.

2. Frame representations of quantum states

From an operational point of view, the formulation of quantum mechanics requires only the
Hermitian operators acting on a complex Hilbert space H with some finite dimension d [9].
The Hermitian operators themselves form a real Hilbert space Herm (H) of dimension d2 with
inner product 〈Â, B̂〉 := tr(ÂB̂).

A basis is a linearly independent set that spans Herm (H). A frame is a generalization of
the notion of a basis. Let � be some set with positive measure µ. The space of real-valued
square integrable functions on � is denoted by L2(�, µ). A frame for Herm (H) is a mapping
F̂ : � → Herm (H) which satisfies

a‖Â‖2 �
∫

�

dµ(α)|〈F̂ (α), Â〉|2 � b‖Â‖2, (1)

for all Â ∈ Herm (H) and some constants a, b > 0. Note that (for finite-dimensional Hilbert
spaces) a frame is equivalent to a spanning set which need not be linearly independent. Such
a linearly dependent spanning set is sometimes called an ‘overcomplete basis’.

Definition 1. A mapping Herm (H) → L2(�, µ) of the form

Â �→ A(α) := 〈F̂ (α), Â〉, (2)

where F̂ is a frame, is a frame representation of Herm (H).

A dual frame is a frame Ê : � → Herm (H) which satisfies

Â =
∫

�

dµ(α)〈F̂ (α), Â〉Ê(α), (3)
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for all Â ∈ Herm (H). When � is finite and |�| = d2, the dual frame is the unique, otherwise
there are infinitely many choices for a dual frame.

Here we present two examples of frames. Consider the operator Ẑ whose spectrum
is spec(Ẑ) = {

e
2iπ
d

k : k ∈ Zd

}
. The eigenvectors form a basis for H and are denoted by

{φk : k ∈ Zd}. Consider also the operator defined by X̂φk = φk+1, where all arithmetic is
modulo d. The operators Ẑ and X̂ are often called generalized Pauli operators since they are
indeed the usual Pauli operators when d = 2. The parity operator is defined by P̂ φk = φ−k .
Let � = Zd × Zd and µ be the counting measure and suppose d is prime. Consider the map
F̂ : � → Herm (H) defined by

F̂ (q, p) = 1

d2
X̂2qẐ2pP̂ e

4iπ
d

qp. (4)

This map is a frame for Herm (H). It is also an orthogonal basis for Herm (H) and thus the
dual frame is unique. Now let � = Z2d × Z2d and µ be the counting measure and suppose d
is even. Consider the map F̂ : � → Herm (H) defined by

F̂ (q, p) = 1

4d2
X̂qẐpP̂ e

iπ
d

qp. (5)

This map is also a frame. However |�| = 4d2 and thus the dual frame cannot be unique.
We propose the following as a minimal requirement for the definition of a quasi-probability

representation of quantum states.

Definition 2. A quasi-probability representation of quantum states is any map Herm (H) →
L2(�, µ) that is linear and invertible.

Given this definition, any phase space representation is then a particular type of quasi-
probability representation. In particular, if there exists symmetry group on �,G, carrying
a unitary representation Û : G → U (H) and a quasi-probability representation satisfying
the covariance property ÛgÂÛ

†
g �→ {A(g(α))}α∈� for all Â ∈ Herm (H) and g ∈ G, then

Â �→ A(α) is a phase space representation. All phase space functions (that we are aware
of) in the literature correspond to quasi-probability representations that satisfy this additional
covariance condition.

It is clear that a frame representation defined by equation (2) is a linear bijection and
hence a quasi-probability representation. Thus, the frames defined by equations (4) and (5)
are quasi-probability representations. Indeed, equation (4) defines the phase space quasi-
probability function defined by Wootters [3] while equation (5) defines the phase space
quasi-probability function defined by Leonhardt [4]. It is less obvious that the converse is also
true. Nevertheless, the following theorem verifies this fact.

Theorem 1. If A mapping W is a quasi-probability representation, then it is a frame
representation for a unique frame F̂ .

Proof. Linearity and the Riesz representation theorem implies that W(Â)(α) = 〈F̂ (α), Â〉
for some unique mapping F̂ : � → Herm (H) (not necessarily a frame). Since Herm (H) is
finite-dimensional, the inverse W−1 is bounded. Thus, W is bounded below by the bounded
inverse theorem. That is, there exists a constant a > 0 such that

a‖Â‖2 �
∫

�

dµ(α)|〈F̂ (α), Â〉|2.
Since 〈F̂ (α), Â〉 ∈ L2(�, µ), there exists a constant b > 0 such that∫

�

dµ(α)|〈F̂ (α), Â〉|2 � b‖Â‖2.

Hence F̂ is a frame. �

4
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3. Frame representations of quantum mechanics

Most proposed phase space functions (of finite-dimensional quantum systems) are
representations of quantum states alone. Here we show that there are two approaches within
the frame formalism to lift any representation of states to a fully autonomous representation
of finite-dimensional quantum mechanics.

An operational set of axioms [9] of quantum mechanics are the following:

(i) There exists a Hilbert space H, dimH = d.

(ii) A preparation (state) is represented by a density operator ρ̂ satisfying 〈ψ, ρ̂ψ〉 � 0, for
all ψ ∈ H, and tr(ρ̂) = 1.

(iii) A measurement is represented by a set of effects {M̂k}, i.e., positive operator valued
measure (POVM), satisfying 0 � 〈ψ, M̂kψ〉 � 1, for all ψ ∈ H, and

∑
k M̂k = 1̂1.

(iv) For a system with density operator ρ̂ subject to the measurement {M̂k}, the probability of
obtaining outcome k is given by the Born rule

Pr(k) = tr(M̂kρ̂). (6)

Hence to construct an autonomous formulation of quantum mechanics we need a set of
functions {Mk} on phase space representing the set of measurement operators {M̂k} as well as
a prescription for calculating the probabilities that are prescribed by the Born rule.

3.1. Deformed probability representations

The first frame representation approach to an autonomous formulation of quantum mechanics
consists of mapping both states and measurements to L2(�, µ) via the same frame F̂ , i.e.
ρ̂ �→ ρ(α) := 〈ρ̂, F̂ (α)〉 and M̂i �→ Mi(α) := 〈M̂i, F̂ (α)〉. The functions in the range of
this frame representation, when the domain is restricted to the density operators, are called
quasi-probability densities. Similarly, the functions in the range of the frame representation,
when the domain is restricted to the effects, are called conditional quasi-probabilities. Then
the axioms of quantum mechanics become the following:

(i) There is a measurable set of allowed properties � endowed with a positive measure µ.

(ii) A preparation (state) is represented by a quasi-probability density ρ(α) ∈ R which
satisfies the normalization condition

∫
�

dµ(α)ρ(α) = 1.

(iii) A measurement is represented by a set of conditional quasi-probabilities {Mk(α) ∈ R}
which satisfies

∑
k Mk(α) = 1 for all α ∈ �.

(iv) For a system with quasi-probability density ρ subject to the measurement {Mk}, the
probability of obtaining outcome k is given by

Pr(k) =
∫

�

dµ(α, β)ρ(α)Mk(β)〈Ê(α), Ê(β)〉, (7)

where Ê is any frame dual to F̂ .

As will become clear in the next section, equation (7) is a deformed version of the usual law
of total probability and hence we call this first approach a deformed probability representation
of quantum mechanics. This is not the only possibility. Indeed, below we will see a different
approach.
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3.2. Quasi-probability representations

Note that the deformed probability calculus, equation (7), can be written as

Pr(k) =
∫

�

dµ(α)ρ(α)M̃k(α), (8)

where

M̃k(α) =
∫

�

dµ(β)Mk(β)〈Ê(α), Ê(β)〉. (9)

Recall that Mk is the frame representation of M̂k for the frame F̂ . Hence M̃k can be identified
as the frame representation of M̂k using a frame Ê that is dual to F̂ . The second frame
representation approach to an autonomous formulation consists of mapping density operators
to functions in L2(�, µ) via a particular choice of frame F̂ and effects to functions in L2(�, µ)

via a frame Ê that is dual to F̂ , i.e. ρ̂ �→ ρ(α) := 〈ρ̂, F̂ (α)〉 and M̂k �→ Mk(α) := 〈M̂k, Ê(α)〉.
As above we define the former functions to be quasi-probability densities and the latter
functions to be conditional quasi-probabilities. The axioms of quantum mechanics can be
reformulated once again as follows:

(i) There is a set of allowed properties � with a positive measure µ.
(ii) A preparation (state) is represented by a quasi-probability density ρ(α) ∈ R which

satisfies the normalization condition
∫
�

dµ(α)ρ(α) = 1.
(iii) A measurement is represented by a set of conditional quasi-probabilities {M̃k(α) ∈ R}

which satisfies
∑

k M̃k(α) = 1 for all s ∈ �.
(iv) For a system with probability density ρ subject to the measurement {M̃k}, the probability

of obtaining outcome k is given by equation (8).

As will become clear in the next section, the probability calculus equation (8) given in
condition (iv) is now just the usual law of total probability, although the preparation and
measurement functions are not necessarily positive semi-definite. Hence, we call this second
approach a quasi-probability representations of quantum mechanics (i.e., a quasi-probability
representation of both states and measurements).

Note that in this quasi-probability representation approach a second frame Ê, which is
dual to F̂ , is required. Recall that the frames given in equations (4) and (5) defined the phase
space quasi-probability functions of Wootters and Leonhardt. For the Wootters case, the dual
frame is unique and is given by

Ê(q, p) = 1

d
X̂2qẐ2pP̂ e

4iπ
d

qp.

For the Leonhardt case, the frame in equation (5) is not a basis and the dual is not unique.
However, a quasi-probability representation of quantum mechanics only requires a dual frame.
One such dual frame is

Ê(q, p) = 1

2d
X̂qẐpP̂ e

iπ
d

qp.

4. Non-classicality: negative quasi-probability or a deformed law of total probability

Let the set � represent the properties of a classical system and the function ρ(α) > 0 represent
the probabilistic knowledge of these properties. Note that these probability densities form a
convex set with the Dirac measures as its extreme points. A measurement is a partitioning of

6
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the space � into disjoint subsets {�j }. The probability of the system to have properties in �j

(we will call this ‘outcome j ’) is

Pr(j) =
∫

�j

dµ(α)ρ(α) =
∫

�

dµ(α)χj (α)ρ(α),

where χj (α) ∈ {0, 1} is the indicator function of �j . The measurement is equivalently
specified by the set {χj (α)}, which is interpreted as the conditional probability of outcome
k given the systems is known to have the properties α. A measurement of this type is
deterministic: it reveals with certainty the properties of the system. Consider now an
indeterministic measurement specified by the conditional probabilities {Mk(α) ∈ [0, 1]}.
These can always be thought of as a convex combination of indicator functions. That is, the
measurement functions form a convex set with the indicator functions as its extreme points.
We summarize the above description with the following definition.

Definition 3. Any statistical or operational model of a set of experimental configurations is
classical if all of the following properties hold:

(i) There is a set of allowed properties � with a positive measure µ.
(ii) A preparation (state) is represented by a probability density ρ(α) � 0 which satisfies the

normalization condition
∫
�

dµ(α)ρ(α) = 1.
(iii) A measurement is represented by a set {Mk(α) ∈ [0, 1]} which satisfies

∑
k Mk(α) = 1

for all α ∈ �.
(iv) For a system with probability density ρ subject to the measurement {Mk}, the probability

of obtaining outcome k is given by the law of total probability

Pr(k) =
∫

�

dµ(α)ρ(α)Mk(α). (10)

Consider now a frame representation defined via a positive frame F̂ . Applying the
deformed probability representation (the first approach of the previous section) to map
quantum mechanics to the space of functions L2(�, µ), we find that the representations
of the preparations and measurements satisfy the criteria of the classical model because they
are guaranteed to be non-negative function when the frame F̂ is positive. However, as noted
previously, the calculation of probabilities, equation (7), is deformed when compared to the
classical one, equation (10). Hence under this approach the associated frame representations
do not meet the criteria of a classical model.

Now, applying instead the quasi-probability representation (the second approach of the
previous section) the probability calculus, equation (8), is the same as the classical one,
equation (10). Furthermore the preparations are represented by non-negative functions
(because the frame F̂ is positive) and therefore also meet the criteria set out by condition
(ii). However, in this case the measurements must be represented via a frame Ê which is dual
to the frame F̂ that is used for representing preparations. It is not immediately obvious that
any quasi-probability representation of quantum mechanics following this second approach is
also unable to meet the criteria of a classical operational model, in particular condition (iii)
which requires non-negative conditional probabilities. We now show that this is impossible
by proving that there does not exist a dual frame of positive operators for a frame of positive
operators.

Theorem 2. There does not exist a dual frame of positive operators for a frame of positive
operators.

7
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Proof. Consider the mapping

	̃(Â) =
∫

�

dµ(α)〈F̂ (α), Â〉Ê(α). (11)

If 	̃ were the identity super-operator, then by definition Ê would be the dual frame of F̂ . We
will show that this is not possible when both F̂ and Ê are positive frames. Let {|φi〉〈φj | : i,

j ∈ Zd} be the standard basis for L (H). Then, the Choi–Jamiolkowski [19] representation of
	̃ is

J (	̃) =
∑

i,j∈Zd

	̃(|φi〉〈φj |) ⊗ |φi〉〈φj | (12)

=
∫

�

dµ(α)

⎛
⎝ ∑

i,j∈Zd

〈φj |F̂ (α)|φi〉Ê(α) ⊗ |φi〉〈φj |
⎞
⎠ (13)

=
∫

�

dµ(α)

⎛
⎝Ê(α) ⊗

∑
i,j∈Zd

〈φj |F̂ (α)|φi〉|φi〉〈φj |
⎞
⎠ (14)

=
∫

�

dµ(α)(Ê(α) ⊗ F̂ (α)), (15)

which is a separable operator (a convex combination of positive operators of the form Â ⊗ B̂)
on H⊗H when both F̂ and Ê are positive frames. However, J (1̃1) is not a separable operator
on H ⊗ H and thus 	̃ cannot be the identity super-operator. Hence Ê cannot be a dual frame
of F̂ . �

This theorem can also be proven using the results of [20]. Theorem 2 of that paper shows
that the channel 	̃ defined by equation (11) for positive operators F̂ and Ê is the so-called
entanglement breaking. However, theorem 6 of [20] states that if 	̃ has fewer than d Kraus
operators, it is not entanglement breaking. Since the identity super-operator has fewer than d
Kraus operators, 	̃ is not entanglement breaking and therefore Ê is not the dual of F̂ .

Hence, although quantum states can always be represented as non-negative probabilities,
measurement functions must then take on negative values or vice-versa. In this way we have a
direct proof that there does not exist any choice of quasi-probability representation of quantum
mechanics that can be made consistent with the non-negativity conditions associated with a
classical model of statistical events.

5. Discussion

Our results prove that the full spectrum of experimental statistics prescribed by finite-
dimensional quantum theory cannot be described by any classical model consisting of the
usual rules of probability applied over an arbitrary choice of property (or hidden variable)
space. Equivalently stated, there does not exist a space of events upon which one can
formulate a non-negative quasi-probability representation of quantum mechanics.

A promising application of the formalism we have developed is to address the question
of whether a restricted set of preparations and measurements involves non-classical resources.
This question has arisen in the context of the degree of coherent control over quantum systems,
for example, in experiments involving nuclear magnetic resonance or super-conducting
devices, where the quantum states and effects that can be achieved are restricted due to

8
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thermalization and decoherence. Our formalism leads to a broadly enabling and rigorous
approach to determining the extent to which quantum effects are indeed present in those
systems. Another context in which this question arises is the field of quantum information
and computation. One has a task which can be achieved with a restricted set of quantum
preparations and effects and one would like to know whether non-classical resources are
actually required for that task. In both of these contexts, if we can identify a particular frame
and a dual which can represent the restricted set of states and measurements as non-negative
functions then we can show that the task or process can be represented as a classical statistical
process, and hence prove that it does not require quantum resources. Conversely, if one can
prove that no such choice of frames exists, then one can prove that quantum resources are
indeed necessary.

Finally, we conclude by addressing the question of how the notion of non-classicality
established by the absence of non-negative quasi-probability representation relates to another
fundamental notion of non-classicality in quantum mechanics, namely, contextuality. The
traditional definition of contextuality comes from a theorem due to Kochen and Specker
[21]. The Kochen–Specker theorem establishes a contradiction between a set of plausible
assumptions associated with the idea that quantum systems possess pre-existing values for
the outcomes of measurements, as is the case in the classical world. Assuming that physical
systems do possess pre-existing values that are revealed via measurements, the Kochen–
Specker theorem leads to the following counterintuitive property that such pre-existing values
must satisfy [22]: suppose three operators Â, B̂ and Ĉ satisfy [Â, B̂] = 0 = [Â, Ĉ], but
[B̂, Ĉ] 	= 0, then the pre-existing value of the observable A will depend on whether observable
B or C is measured along with A. That is, the pre-existing value of A depends on the context of
the measurement. We note that the notion of context independence is at the heart of Bell-type
inequalities, where the pre-existing values of the commuting operators in question are required
to be context independent by appealing to local causality.

Spekkens has generalized the notion of non-contextuality from the idea that outcomes
of individual measurements are independent of the measurement context to the requirement
that the probabilities for outcomes of measurements are independent of the measurement
context [23]. This is achieved by formulating a definition of contextuality for an arbitrary
operational theory and includes a notion of contextuality for preparation procedures (states)
as well as measurements. In [18], Spekkens has shown that a quasi-probability representation
of quantum mechanics which excludes negativity is equivalent to the generalized notion of
non-contextuality that he proposed in [23] and has obtained an independent proof of the
impossibility of constructing a non-negative quasi-probability representation. Interestingly,
in light of this connection our direct proof of the non-existence of a positive dual frame to
a positive frame gives a new independent proof of the generalized contextuality of quantum
mechanics.

In this paper we have shown that using frame theory provides a formalism that unifies
the known quasi-probability representations of quantum states. We have shown two different
ways (the deformed and quasi-probability approach) to lift a quasi-probability representation of
states to a consistent and equivalent formulation of quantum mechanics. We have also proved
that these quasi-probability representations of quantum states and measurements require either
negativity or a deformation of the rule for calculating probabilities. We have thus given a
mathematically rigorous set of criteria that establish the (long suspected) connection between
negativity and non-classicality. While the results of this paper have been proven only for finite-
dimensional Hilbert spaces (although allowing for either finite or continuous representation
spaces), we conjecture that the results continue to hold also for infinite-dimensional quantum
systems (i.e., all separable Hilbert spaces).

9



J. Phys. A: Math. Theor. 41 (2008) 352001 Fast Track Communication

Acknowledgments

The authors thank John Watrous for the simplified proof of the negativity result and Bernard
Bodmann, Matt Leifer, Etera Livine and Rob Spekkens for helpful discussions. This work
was supported by NSERC and MITACS.

Appendix

For completeness we describe here how to formulate quantum mechanics directly in either the
deformed or quasi-probability representations without appealing to the axioms of quantum
mechanics in their usual formulation (i.e., in terms of positive linear operators on finite-
dimensional Hilbert space). Recall that previously, in the deformed probability representation,
a quasi-probability density was defined as a function in the range of a frame representation
when the domain is restricted to the density operators. Similarly, the conditional quasi-
probabilities were those functions in the range of a frame representation when the domain
is restricted to the effects. Of course, for a particular choice of frame, not every function in
L2(�, µ) will correspond to a valid quantum state or effect. Hence we need a set of internal
conditions, without appealing to the nature of the linear operators in the standard formulation
of quantum theory, which characterize the valid state and measurement functions in L2(�, µ).
The conditions can be found by simply noting that the frame representation, equation (2), is an
isometric and algebraic isomorphism from Herm (H) to L2(�, µ) equipped with inner product

〈A,B〉F :=
∫

�2
dµ(α, β)A(α)B(β)F(α, β),

where F(α, β) := 〈Ê(α), Ê(β)〉, and algebraic multiplication

(A 
F B)(α) :=
∫

�2
dµ(β, γ )A(β)B(γ )F(α, β, γ ),

where F(α, β, γ ) = 〈F̂ (α), Ê(β)Ê(γ )〉.
Using the above, we first state the conditions for a function in L2(�, µ) to be a valid state or

effect in the deformed probability representation. A pure state is a function ρpure ∈ L2(�, µ)

satisfying ρpure 
F ρpure = ρpure. A general state is a function ρ ∈ L2(�, µ) satisfying
〈ρ, ρpure〉F � 0 for all pure states and

∫
�

dµ(α)ρ(α) = 1. A measurement is represented by
a set {Mk ∈ L2(�, µ)} of effects which satisfies 〈Mk, ρpure〉F � 0 for all pure states and for
which

∑
k Mk = 11, where 11 is the identity element in L2(�, µ) with respect to the algebra

defined by 
F.
For quasi-probability representations of quantum mechanics, the term quasi-probability

density has the same meaning as in the deformed probability representation. Similarly, the
conditional quasi-probabilities are those functions in the range of the frame representation
of the measurements (i.e. the frame representation defined via the dual Ê) when the domain
is restricted to the effects. In this representation states and measurements in L2(�, µ) must
again meet certain criteria to be valid. The conditions are similar to those in the deformed
probability representation. In particular, the pure states and general states are equivalently
characterized. However, a measurement is now represented by a set {Mk ∈ L2(�, µ)} which
satisfies 〈Mk, ρpure〉 � 0 (now the usual pointwise inner product) for all pure states and for
which

∑
k Mk = 11, where 11 is the identity element in L2(�, µ) with respect to the algebra

defined by 
E (which is defined in the same way as 
F with the roles of the frame and its dual
reversed).
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